On the Rogers-Szego polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L611
(http://iopscience.iop.org/0305-4470/27/17/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:42

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the Rogers-Szegó polynomials

N M Atakishiyev $\dagger \S \|$ and Sh M Nagiyev \ddagger
\dagger Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas-Cuernavaca, Universidad Nacional Autonoma de México, Apartado Postal 139-B, 62191 Cuernavaca, Morelos, México
\ddagger Institute of Physics, Academy of Sciences of Azerbaijan, Baku 370143, Azerbaijan

Received 15 June 1994

Abstract

An orthogonality relation on the full real line for the Rogers-Szeg \varnothing polynomials is discussed. It is argued that Fourier transformation with the standard exponential kemel \exp (ixy) relates the Rogers-Szego and Stieltjes-Wigert functions.

Here we study some properties of the Rogers-Szeg δ polynomials and, in particular, their connection with the Stieltjes-Wigert polynomials. The knowledge of these properties may be useful in constructing concrete realizations for the q-oscillator wavefunctions, expressed in terms of orthogonal q-polynomials and their weight functions [1-7].

As is known [8,9], the Rogers-Szegó polynomials are defined as

$$
H_{n}(x ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1}\\
k
\end{array}\right]_{q} x^{k} \quad 0<q<1
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

and $(a, q)_{n}=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)$. They satisfy the orthogonality relation on the unit circle [8, 10]

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \oint_{|w|=1} H_{m}\left(-\frac{w^{*}}{\sqrt{q}} ; q\right) H_{n}\left(-\frac{w}{\sqrt{q}} ; q\right) \vartheta_{3}\left(\frac{\log w}{2 \mathrm{i}} q^{1 / 2}\right) \frac{\mathrm{d} w}{w}=\frac{(q ; q)_{m}}{q^{m}} \delta_{m n} \tag{2}
\end{equation*}
$$

where $\vartheta_{3}(z, q)$ is the theta-function, i.e.,

$$
\begin{equation*}
\vartheta_{3}(z, q) \equiv \vartheta_{3}(z \mid \tau)=\sum_{j=-\infty}^{\infty} q^{j^{2}} \mathrm{e}^{2 \mathrm{i} j z} \tag{3}
\end{equation*}
$$

[^0]and $q=\exp (\pi i \tau)$ (see, for example, [11]). The Rogers-Szego polynomials can be expressed through the q-Hermite polynomials $H_{n}(x \mid q)$ [12] as
\[

$$
\begin{equation*}
H_{n}\left(-\mathrm{e}^{2 \mathrm{i} x} ; q\right)=\mathrm{i}^{-n} \mathrm{e}^{\mathrm{i} n x} H_{n}(\sin x \mid q) . \tag{4}
\end{equation*}
$$

\]

The Rogers-Szego polynomials satisfy the orthogonality relation on the full real line

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} H_{m}\left(-q^{-1 / 2} \mathrm{e}^{-2 \mathrm{i} x x} ; q\right) H_{n}\left(-q^{-1 / 2} \mathrm{e}^{2 \mathrm{ikx}} ; q\right) \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{(q ; q)_{m}}{q^{m}} \delta_{m n} \tag{5}
\end{equation*}
$$

where $q=\exp \left(-2 \kappa^{2}\right)$. To prove (5), make the substitution $w=\mathrm{e}^{\mathrm{i} \alpha}(0 \leqslant \alpha<2 \pi)$ and use the modular transformation [11]

$$
\begin{equation*}
\vartheta_{3}(z \mid \tau)=\frac{\mathrm{e}^{-\mathrm{i} \tau^{2} / \pi \tau}}{\sqrt{-\mathrm{i} \tau}} \vartheta_{3}\left(z \tau^{-1} \mid-\tau^{-1}\right) \tag{6}
\end{equation*}
$$

to rewrite the left-hand side of (2) as
$\frac{1}{2 \sqrt{\pi} \kappa} \int_{0}^{2 \pi} \mathrm{~d} \alpha H_{m}\left(-q^{-1 / 2} \mathrm{e}^{-\mathrm{j} \alpha} ; q\right) H_{n}\left(-q^{-\mathrm{i} / 2} \mathrm{e}^{\mathrm{i} \alpha} ; q\right) \vartheta_{3}\left(\frac{\pi \mathrm{i} \alpha}{2 \kappa^{2}}, \mathrm{e}^{-\pi^{2} / \kappa^{2}}\right) \mathrm{e}^{-\alpha^{2} / 4 \mathrm{~K}^{2}}$.
Using expansion (3) and taking into account the uniform convergence of this series in any bounded domain of values of z [11], substitute (3) into (7) and integrate it termwise. This gives
$\frac{1}{2 \sqrt{\pi} \kappa} \sum_{j=-\infty}^{\infty} \mathrm{e}^{-\pi^{2} j^{2} / \kappa^{2}} \int_{0}^{2 \pi} \mathrm{~d} \alpha H_{m}\left(-q^{-1 / 2} \mathrm{e}^{-\mathrm{i} \alpha} ; q\right) H_{n}\left(-q^{-1 / 2} \mathrm{e}^{\mathrm{i} \alpha} ; q\right) \exp \left(-\frac{\alpha^{2}}{4 \kappa^{2}}-\frac{\pi \alpha j}{\kappa^{2}}\right)$.
The change of variable $2 k x_{j}=\alpha+2 \pi j,(\pi / \kappa) j=x_{j}^{\min } \leqslant x_{j} \leqslant x_{j}^{\text {max }}=(\pi / \kappa)(j+1)$ allows one to sum (8) with respect to j and leads to the left-hand side of (5), if one takes into account that $x_{j=1}^{\max }=x_{j}^{\min }$.

The more general case of (5), i.e., orthogonality of the Askey-Wilson polynomials [13] with respect to a Ramanujan-type measure is discussed in [14].

From (5), it follows that in analogy with the classical Hermite functions (or the linear harmonic-oscillator wavefunction in quantum mechanics) $H_{n}(x) \exp \left(-x^{2} / 2\right)$ [15], the orthonormalized system

$$
\begin{equation*}
\psi_{n}^{\mathrm{RS}}(x ; q)=\frac{q^{n / 2}}{\pi^{1 / 4}(q ; q)_{n}^{1 / 2}} H_{n}\left(-q^{-1 / 2} \mathrm{e}^{2 i x x} ; q\right) \exp \left(\frac{-x^{2}}{2}\right) \tag{9}
\end{equation*}
$$

can be called the Rogers-Szego functions. We remark that to prove the completeness of (9) in L^{2}, the bilinear kernel

$$
\begin{equation*}
K_{z}(x, y ; q)=\sum_{n=0}^{\infty} z^{n} \psi_{n}^{\mathrm{RS}}(x ; q) \psi_{n}^{\mathrm{RS}}(y ; q)^{*} \quad|z|<1 \tag{10}
\end{equation*}
$$

where $*$ denotes the complex conjugate, needs to be introduced (for details see [15, 16]). Due to the orthonormality of (9), this kernel has the important reproducing properties

$$
\begin{align*}
& \int_{-\infty}^{\infty} K_{z}(x, y ; q) \psi_{n}^{\mathrm{RS}}(y ; q) \mathrm{d} y=z^{n} \psi_{n}^{\mathrm{RS}}(x ; q) \tag{11}\\
& \int_{-\infty}^{\infty} K_{z}(x, t ; q) K_{z^{\prime}}(t, y ; q) \mathrm{d} t=K_{z z^{\prime}}(x, y ; q) . \tag{12}
\end{align*}
$$

The explicit form of (10) is found by taking into account relation (4) and using the bilinear generating function (or the Poisson kernel) for the q-Hermite polynomials $H_{n}(x \mid q)$ [12], i.e.,

$$
\begin{equation*}
K_{z}(x, y ; q)=\frac{1}{\sqrt{\pi}} \frac{\left(q z^{2} \mathrm{e}^{2 \mathrm{i} x(x-y)} ; q\right)_{\infty} \exp \left(-x^{2}+y^{2} / 2\right)}{\left(q z, z \mathrm{e}^{2 \mathrm{i} k(x-y)},-q^{1 / 2} z \mathrm{e}^{2 \mathrm{i} k x},-q^{1 / 2} z \mathrm{e}^{-2 \mathrm{i} k y} ; q\right)_{\infty}} \tag{13}
\end{equation*}
$$

where $\left(z_{1}, \ldots, z_{k} ; q\right)_{\infty}=\prod_{j=1}^{k}\left(z_{j} ; q\right)_{\infty}$. For a more detailed discussion of the completeness property in the case similar to (9) of an orthogonal system of functions, we refer the reader to [17].

To evaluate a Fourier transform of the Rogers-Szeg δ functions, we remember that the Stieltjes-Wigert polynomials $s_{n}(x)$ are defined as (see, for example, [18])

$$
\begin{equation*}
s_{n}(x)=(-1)^{n} q^{2 n+1 / 4}(q ; q)_{n}^{-1 / 2} \tilde{s}_{n}\left(-q^{1 / 2} x ; q\right) \quad 0<q<1 \tag{14}
\end{equation*}
$$

where, in analogy with (1), the notation

$$
\tilde{s}_{n}(x ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{15}\\
k
\end{array}\right]_{q} q^{k^{2}} x^{k}
$$

is used. These polynomials satisfy the orthogonality relation

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \tilde{s}_{m}\left(-q^{-1 / 2} \mathrm{e}^{-2 \kappa x} ; q\right) \tilde{s}_{n}\left(-q^{-1 / 2} \mathrm{e}^{-2 \kappa x} ; q\right) \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{(q ; q)_{m}}{q^{m}} \delta_{m n} \tag{16}
\end{equation*}
$$

and can be expressed through the continuous q^{-1}-Hermite polynomials $h_{n}(x \mid q)=$ $\mathrm{i}^{-n} H_{n}\left(\mathrm{ix} \mid q^{-1}\right)$ [19], i.e.,

$$
\begin{equation*}
\tilde{s}_{n}\left(-q^{-n} \mathrm{e}^{-2 x} ; q\right)=\mathrm{e}^{-n x} h_{n}(\sinh x \mid q) . \tag{17}
\end{equation*}
$$

Besides, as follows from (1) and (15),

$$
\tilde{s}_{n}\left(x ; q^{-1}\right)=H_{n}\left(x q^{-n} ; q\right) .
$$

To prove that for arbitrary complex a, the Rogers-Szego $H_{n}\left(a \mathrm{e}^{2 \mathrm{i} x} ; q\right) \exp \left(-x^{2} / 2\right)$ and the Stieltjes-Wigert $\tilde{s}_{n}\left(a e^{-2 k y} ; q\right) \exp \left(-y^{2} / 2\right)$ functions are related to each other by the Fourier transformation

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H_{n}\left(a \mathrm{e}^{2 \mathrm{i} x x} ; q\right) \mathrm{e}^{\mathrm{i} x y-x^{2} / 2} \mathrm{~d} x=\tilde{s}_{n}\left(a \mathrm{e}^{-2 x y} ; q\right) \mathrm{e}^{-y^{2} / 2} \tag{18}
\end{equation*}
$$

substitute the explicit representation (1) into the left-hand side of (18) and integrate over x with the aid of the formula

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} x y-x^{2} / 2} \mathrm{~d} x=\mathrm{e}^{-y^{2} / 2} \tag{19}
\end{equation*}
$$

As follows from (18) and its inverse transformation, the relation between the RogersSzegő and the Stieltjes-Wigert polynomials can be also written in terms of the differencedifferentation formulae ($\partial_{x}=\mathrm{d} / \mathrm{d} x$)

$$
\begin{align*}
& H_{n}\left(a \mathrm{e}^{-2 i \kappa x} ; q\right)=\mathrm{e}^{x^{2} / 2} \tilde{s}_{n}\left(a \mathrm{e}^{2 i \kappa \partial_{x}} ; q\right) \mathrm{e}^{-x^{2} / 2} \\
& \tilde{s}_{n}\left(a \mathrm{e}^{-2 \kappa x} ; q\right)=\mathrm{e}^{x^{2} / 2} H_{n}\left(a \mathrm{e}^{2 \kappa \partial_{x}} ; q\right) \mathrm{e}^{-x^{2} / 2} \tag{20}
\end{align*}
$$

which are q-analogues of the relation [20]

$$
\begin{equation*}
H_{n}(x)=\mathrm{i}^{\pi} \mathrm{e}^{x^{2} / 2} H_{n}\left(\mathrm{i} \partial_{x}\right) \mathrm{e}^{-x^{2} / 2} \tag{21}
\end{equation*}
$$

for the classical Hermite polynomials $H_{n}(x)$. To verify (20), one needs just the evident relations

$$
\mathrm{e}^{2 n \kappa \dot{\partial}_{x}} \mathrm{e}^{\mathrm{i} x y}=\mathrm{e}^{2 i n x y} \mathrm{e}^{\mathrm{i} x y} \quad n=0,1,2, \ldots
$$

Observe also the following limit formulae (cf [21]):

$$
\begin{align*}
& \lim _{q \rightarrow 1^{-}}\left(\frac{q}{1-q}\right)^{n / 2} H_{n}\left(-q^{-1 / 2} \mathrm{e}^{2 k x} ; q\right)=(\mathrm{i} \sqrt{2})^{-n} H_{n}(x) \tag{22}\\
& \lim _{q \rightarrow 1^{-}}\left(\frac{q}{1-q}\right)^{n / 2} \tilde{s}_{n}\left(-q^{-1 / 2} \mathrm{e}^{-2 \kappa x} ; q\right)=2^{-n / 2} H_{n}(x) \tag{23}
\end{align*}
$$

where $q=\exp \left(-2 \kappa^{2}\right)$. To prove (22), use the binomial theorem for the quantities $u=\mathrm{e}^{\mathrm{i} k \partial_{x}}$ and $v=-q^{-1 / 2} \mathrm{e}^{2 k x}$, satisfying the commutation relation of the quantum plane $u v=q v u$, i.e. (see, for example, [18]),

$$
(u+v)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} v^{k} u^{n-k}
$$

to define the q-raising operator $b^{+}(x ; q)$ as (cf $\left.[1,5]\right)$

$$
\begin{align*}
H_{n}\left(-q^{-1 / 2} \mathrm{e}^{2 i k x} ; q\right) & =\left(-q^{-1 / 2} \mathrm{e}^{2 i k x}+\mathrm{e}^{\mathrm{i} x d_{x}}\right)^{n} * 1 \\
& =\left(-\mathrm{i} \sqrt{\frac{1-q}{q}}\right)^{n} \mathrm{e}^{x^{2} / 2}\left[b^{+}(x ; q)\right]^{n} \mathrm{e}^{-x^{2} / 2} \tag{24}
\end{align*}
$$

Since, in the limit when $q \rightarrow 1^{-}$(or $\kappa \rightarrow 0$), the operator

$$
b^{+}(x ; q)=\frac{\mathrm{e}^{\mathrm{i} k x}}{\mathrm{i} \sqrt{1-q}}\left(\mathrm{e}^{\mathrm{i} k x}-q^{3 / 4} \mathrm{e}^{\mathrm{i} \kappa \mathrm{~J}_{x}}\right)
$$

coincides with the harmonic-oscillator creation operator $a^{+}(x)=\frac{1}{\sqrt{2}}\left(x-\partial_{x}\right)$, it follows from (24) that the left-hand side of (22) in this limit tends to

$$
\mathrm{e}^{x^{2} / 2}\left[\sqrt{2} a^{+}(x)\right]^{n} \mathrm{e}^{-x^{2} / 2}=H_{n}(x)
$$

Now, it is easily verified that (18) and (22) yield the limit formula (23).
We are grateful to R Askey, M Rahman, and K B Wolf for discussions. One of us (NMA) would like to acknowledge the hospitality of the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM in Cuernavaca. This work is partially supported by the DGAPA Project IN 104293.

References

[1] Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581-8
[2] Kagramanov E I, Mrr-Kasimov R M and Nagiyev Sh M 1990 J. Math. Phys. 31 1733-8 Mir-Kasimov R M 1991 J. Phys. A: Math. Gen. 24 4283-308
[3] Atakishiyev N M and Suslov S K 1990 Teor. Matem. Fiz. 85 64-73; 1991 Teor. Matem. Fiz. 87 154-6
[4] Damaskinsky E V and Kulish P P 1992 Zapiski Nauchnykh Seminarov POMI vol 199, 81-90 (SaintPetersburg: Nauka) pp 81-90
[5] Floreanini R and Vinet L 1991 Lett. Math. Phys. 22 45-54
[6] Atakishiyev N M and Nagiyev Sh M 1994 Teor. Matem. Fiz 98 241-7
[7] Atakishiyev N M, Frank A and Wolf K B 1994 J. Math. Phys. 35 3253-60
[8] Szegð G 1982 Collected Papers vol 1, ed R Askey (Basel: Birkäuser) pp 793-805
[9] AI-Salam W A and Carlitz L 1957 Boll. Unione Matem, Ital. 12 414-7
[10] Carlitz L 1958 Publicationes Mathematica 5 222-8
[1I] Whittaker E T and Watson G N 1984 A Course of Modern Analysis 4th edn (Cambridge: Cambridge University Press)
[12] Askey R A and Ismail M E H 1983 Studies in Pure Mathematics ed P Erdös (Boston, MA: Birkhäuser) pp 55-78
[13] Askey R and Wilson J A 1985 Some basic hypergeometrical orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 319
[14] Atakishiyev N M 1994 Teor, i Matem. Fiz 99 155-9; Teor. Matem. Fiz. to appear
[15] Wiener N 1933 The Fourier Integral and Certain of its Applications (Cambridge: Cambridge University Press)
[16] Askey R, Atakishiyev N M and Suslov S K 1993 An analog of the Fourier transformation for a q-harmonic oscillator Preprint LAE-5611/1, Kurchatov Institute, Moscow; 1993 Symmetries in Science vol 6, ed B Gruber (New York: Plenum) pp 57-63
[17] Ismail M E H and Masson D R q-Hermite polynomials, biorthogonal rational functions, and q-beta integrals Trans. Am. Math. Soc. to appear
[18] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[19] Askey R 1989 q-series and Partitions (IMA Volumes in Mathematics and Its Applications) ed D Stanton (New York: Springer) pp 151-8
[20] Atakishiyev N M, Mir-Kasimov R M and Nagiyev Sh M 1979 Quasipotential models of the relativistic oscillator Preprint JINR E2-12367, Dubna; 1980 Teor. Matem. Fiz. 44 47-62
[21] Koekoek R and Swarttouw R F 1994 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Delft University of Technology Report 94-05, Delft

[^0]: § Permanent address: Institute of Physics, Azerbaijan Academy of Sciences, Baku 370143, Azerbaijan. Visiting Scientist at IIMAS-UNAM/Cuernavaca with Cátedra Patrimonial CONACYT, Mexico.
 || e-mail: natig @ce.ifisicarn.unam.mx

